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Hosana Whole Systems Analysis 

The HOSANA project has been designed as an 8-month scoping 
study funded by the UK government to explore options to 
mitigate supply risks associated with technology metals used in 
clean energy technologies and other digital products, starting 
with twelve elements selected by the UK’s Natural Environment 

Executive Summary
The business risks of material criticality are not that the earth’s 
reserves will be consumed, but are that the supply chain cannot 
respond rapidly enough to demand or supply shocks. Managing 
this risk depends on understanding the speed at which alternative 
supplies can be brought to market, and the risks can be reduced 
by increasing the readiness of new capacity throughout the supply 
chain.

These new insights are a step change from previous approaches 
to criticality which have focused on the supply of ore from existing 
mines and are the key findings of a preliminary whole systems 
analysis of material criticality:

• Capacity risks which arise when demand outstrips supply 
may occur due to monopolistic behaviour in the supply chain, 
political instability in producing countries, demand surges, 
competition from new or rival industries. When such risks lead 
to supply or demand disruption they create price volatility in 
mineral commodities markets, and in extreme cases lead to 
supply shortage.

• When this occurs, actors throughout the supply chain will 
attempt to restore the balance in the system according to 
their capacity readiness for example by expanding mine 
production, increasing input from secondary feedstock, using 
materials more efficiently, or switching to substitutes. 

• Mineral criticality can therefore be mitigated by increasing 
the readiness of alternative capacity, for example through 
better understanding of alternative mineral deposits including 
existing tailings, improved processing with higher yields 
throughout the supply chain, or better planning for recovery 
and recycling from in-use stocks.

In our preliminary analysis, we mapped the global supply chains 
of four critical elements from mine to product, and sent our 
results to key experts around the world, whose interests spanned 
mining, trading, distributing, processing, manufacturing, recycling 
and regulation. We then conducted an “expert panel week” with 
twenty nine hour-long interviews with these experts, to critique our 
analysis, and probe our understanding of mineral criticality, which is 
summarised in this report. Having understood this new definition of 
mineral criticality, we can now recognise three key knowledge gaps 
that inhibit our ability to reduce risks to businesses and governments 
throughout the mineral supply chain. In parallel with this report, 
the second outcome of our preliminary project is a proposal for a 
full-scale research project to develop a practical business and policy 
support tool to assess the risks of mineral criticality, and to increase 
capacity readiness through improved knowledge of geological and 
processing options.  The three key knowledge gaps are:

Towards a Capacity Risk and Readiness Evaluation Tool
In our preliminary analysis, we characterised the global supply chain 
of four representative elements (In, Nb, PGMs and Co) [Pages 2-3] 
by mapping their material flows across the production system, from 
mining to final application and disposal. Five general observations 
emerged from this analysis: (1) there is no long-term geological 
scarcity of these elements, but they are unevenly distributed in the 

Earth’s crust, leading to production concentration by a few mines 
and countries; (2) overall, large material losses exist around these 
supply chains (78%, 44%, 26% and 77% for indium, niobium, plati-
num group metals and cobalt respectively); (3) material losses most-
ly occur during the upstream beneficiation and refining stages; (4) 
input from end-of-life recycling is generally low compared to losses 
for these elements (<23%); and (5) our understanding of the supply 
chain of these elements is limited by data unavailability.

Discussion of our results with industry specialists during our “expert 
panel week” suggested that although our rough-cut supply chain 
characterisations are useful in their current state, they still do not 
address some of the knowledge gaps that inhibit stakeholders’ re-
sponsiveness to capacity risks. As a result of this, we have defined 
a layout for a dynamic integrative supply chain analysis that goes 
beyond mass flows, to allow users to locate capacity risks over time 
and identify opportunities to improve capacity readiness and accel-
erate responses to future supply chain shocks [Pages 4-5]. 

Capacity Readiness Through Geological Understanding
Evidence gathered during the expert panel week indicates that 
some of the risks associated with critical metals resources can be 
mitigated through co-production of critical metals with other criti-
cal metals, or with other industrial and/or precious metals. In order 
to determine the critical metal deposits that might be most fit for 
resilient co-metal production, research is needed that elucidates: 
(1) The geological processes that produce variations in co-metal/
mineralogical combinations, such that co-metal ore type domains 
can be incorporated into regional geological models, which in 
turn facilitate predictive models for exploration and more robust 
resource estimation; (2) Use of the mineral chemistry and mineral 
associations/relationships of co-metal ore types within deposits to 
examine deposit suitability for a more responsive supply and to de-
velop a broader understanding of crustal stocks. This research area 
is described on Page 7 of this report.

Capacity Readiness Through Better Mineral Processing
Our global mass-flow maps of In, Nb, PGMs and Co show that metal 
losses during beneficiation and refining are disproportionately high 
compared to losses from the rest of the lifecycle. In parallel with 
the need for better understanding of the geological formation and 
chemistry of mineral deposits, research is therefore required to de-
velop geometallurgical models for mineral processing to examine 
disaggregation and liberation of ore mineral and identification of vi-
able mineral processing routes. In addition, it is necessary to charac-
terise the physical, technological and economic factors that govern 
ore processing methods. Research in this area, described on Page 8 
of this report, is particularly required to: (1) allow rapid identification 
of geological deposits that can be exploited economically, leading 
to new mines or the addition of co-production of strategic minerals 
to existing operations; (2) to reduce the losses of strategic miner-
als from current mines. This will include engaging with the relevant 
stakeholders to understand the financial drivers, and the process 
and technological shortcomings from existing mining operations.
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Rough-cut supply chain characterisation 
Figure 1: Global Indium Mass Flow In 2009

Figure 2: Global Niobium Mass Flow In 2011

Key messages: i) all indium is mined as a by-product of base metals. Most indium is extracted from zinc processing residues; ii) nearly 50% of indium is lost due to zinc ores 
being processed in non-indium producing zinc refineries; iii) the average indium recovery rate in indium producing zinc refineries is around 50%; iv) recycling is almost 
non-existent.
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Key messages: i) most niobium is extracted as a primary ore from pyrochlore minerals; ii) the average beneficiation recovery rate is around 60%; iii) niobium mine pro-
duction is dominated by Brazil (96%); iv) most niobium (88%) is converted to HSLA grade FeNb for steel production; v) once niobium is embedded in steel it is not usually 
recovered again as a single element and becomes diluted within the liquid steel pool.

Figure 3: Global Platinum Group Metals Mass Flow In 2010
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Key messages: i) South African PGMs are mined as primary ores while Russian PGMs are mined as by-products of nickel-copper ores; ii) the largest material losses occur dur-
ing the beneficiation and concentration stage (15%); iii) smelting and refining losses are comparatively lower (4% and 1% respectively); iv) end-of-life recycling accounted 
for approximately 23% of total input in 2010. 

Key messages: i) cobalt is mostly mined as a co-product with copper and/or nickel; ii) beneficiation recovery rates between 20 and 90% have been reported (a 50% value is 
assumed in here); iii) the Democratic Republic of Congo concentrated 72% of global cobalt mine production in 2011; iv) a recovery rate of 52% was allocated to the extraction 
and refining stage; v) end-of-life scrap represents only 20% of the input material for the refining stage.

Figure 4: Global Cobalt Mass Flow In 2011
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The Sankey diagrams in this section characterise the supply chain of four elements (In, Nb, PGMs and Co) to identify key bottlenecks and resource 
efficiency improvement opportunities by mapping their material flows, from mining to final application and disposal. The key messages obtained 
from each supply chain are summarised under each diagram.



Towards a capacity risk and readiness evaluation tool

1. Comprehensive Supply Chain Characterisation
The fundamental requirement in this process is to generate mass 
flow analyses for all strategic metals identified by the UK’s Natural 
Environment Research Council (i.e. Li, V, Co, Te, Se, Nd, In, Ga, 
HREE, C, Nb and PGMs), and for any other elements of interest for 
the project stakeholders, of the form of the analyses that we have 
already performed for four elements, to use them as a solid base 
from which to start developing more detailed and complex supply 
chain models.

2. Sustainability Indicators 
Sustainability indicators such as energy, water and chemicals con-
sumption, as well as carbon dioxide emissions, are usually not 
published by technology metals mining and refining companies. 
Therefore the true environmental effects of their operations are 
unknown. The research challenge is clear: it is necessary to engage 
with the stakeholders that hold such information in order to cover 
the enormous knowledge gaps that exist in this area and provide 
detailed insight into the processing technologies, resource intensi-
ties and environmental emissions associated to critical metals ex-
traction and processing, and how these variables could affect future 
demand and supply.

3. Characterisation Of Interconnected Metal Cycles
Metals do not exist in isolation in nature and are usually combined 
with other elements in minerals. Recovering single elements from 
these interconnected mineral structures is an extremely energy 
intensive and complex procedure. Once elements are isolated and 
refined, the production system combines them again to form a wide 
range of human-made compounds that are chemically and phys-
ically dissimilar to the natural mineral structures where these ele-
ments were originally extracted from. In order to achieve a whole 
systems view of material criticality, it is necessary to understand 
how demand for one element influences other metal cycles, includ-
ing the resource stresses and environmental impacts that they exert 
on those interlinked metal systems.

4. Integration Of New Dynamic Supply Chain Tool 
The inputs to the dynamic tool will include forecasts of mineral 
elements demand as well as editable processing technology sce-
narios to predict how technology performance and selection (e.g. 
between bio-processing or leaching) may affect the capacity of sup-
ply to keep up with demand, and how sustainability indicators (re-
source intensity and environmental impacts) along the supply chain 
may evolve over time. Editable scenarios will also include the range 
of traditional responses usually undertaken to deal with supply-de-
mand imbalances, both in upstream and downstream processes 
(e.g. starting new mines, stockpiling, etc.). The tool will allow sen-
sitivity studies to predict the value of technology innovations and 
the impacts of increased material consumption on interconnected 
metal cycles, including potential supply-demand imbalances that 
could lead to temporary scarcity or price volatility. 

the supplementary information listed opposite. The aim is that 
by increasing the knowledge base about specific material supply 
chains, it would be easier for stakeholders to locate supply capacity 
risks and visualise strategic capacity readiness areas where 
intervention is most required to maximise impact and facilitate 
criticality responses, effectively improving the time required to 
re-balance the system. The integrative layout (below) represents a 
static snapshot of material flows during one specific year and this 
characteristic limits its ability to anticipate future supply-demand 
imbalances, as these are dynamic phenomena. Consequently, it 
is necessary to convert this layout into a dynamic tool that allows 
stakeholders to visualise the influence of several key variables on 
the supply chain, including the effect of future demand scenarios 
on material requirements, resource intensities, and environmental 
impacts associated to greater material extraction and processing. 
The creation of this tool would require four development steps:

Our maps of In, Nb, PGMs and Co (previous page) display the allo-
cation of these materials across their supply chains by following the 
mining and processing-manufacturing-use route for each element, 
the recycling and re-use flows, and the points where material loss-
es occur. These maps highlight the total amount of materials that 
were extracted, processed and used during one specific year, but 
do not indicate the accumulated natural and anthropogenic ma-
terial stocks available for human exploitation. This methodology 
has proved to be a useful way to identify key bottlenecks, resource 
efficiency improvement opportunities, and knowledge gaps in the 
supply chain. However, evidence gathered during our “expert panel 
week” suggests that supplementary information could be added to 
increase the knowledge base and transparency of mineral supply 
chains, including:

• Natural stocks in Earth’s crust and their composition

• Anthropogenic stocks and their composition

• Resource intensities (e.g. water, energy, and so on).

• Emissions to the environment (e.g. mine waste, CO2 emissions, 
leachate, and so on).

• Element linkages along the chain (i.e. map of all other elements 
that accompany a specific compound material through its life). 

• Recycling rates and recyclability indicators.

• Price volatility.

• Geopolitical risks of production concentration.

• Information about toxicity risks and legislation.

We have defined a new layout for an integrative supply chain 
analysis that goes beyond mass flows (below) and incorporates 
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The supply chain layout shown here measures 

material flows across the production system 

and time, employing this knowledge as a 

starting point to track material stocks, quantify 

capacity risks, and evaluate the overall capacity 

readiness of the system. By doing this, the 

layout allows the identification of key areas 

where intervention could lead to increased 

capacity readiness and faster supply-demand 

re-balancing within the system. Further 

information about the capacity risks and 

capacity readiness categories shown here can 

be found on the next page.



Capacity risks and capacity readiness explained

 ▪ Reserves concentration (lack of natural deposits diversity).

 ▪ Production geographical concentration.

 ▪ Political instability in producing countries.

 ▪ Government  interference due to national security/strategy.

 ▪ Commercial reliance on a single commodity (lack of output diversity 

due to by- and co-production).

 ▪ Physical availability in earth’s crust.

 ▪ Resource availability and costs (e.g. water or energy).

 ▪ Social and legislation constraints due to ecological and health impacts.

Supply Demand

 ▪ Likelihood of demand spikes due to new technologies or markets.

 ▪ Demand competition between industries, technologies or sectors.

 ▪ Lack of substitutes.

 ▪ Low recyclability due to physical segregation limitations.

 ▪ Low recyclability due to lack of end-of-life collection.

 ▪ Expand capacity in existing mines (long timescale, subject to 

physical and economic feasibility).

 ▪ New mineral deposits exploration and exploitation (long timescale, 

subject to economic certainty).

 ▪ Commence or expand by-product and co-product output (short 

timescale).

 ▪ Process old mine waste/tailings (long timescale, subject to technical 

and economic feasibility).

 ▪ Optimise/minimise production losses through R&D investments 

(long timescale)

 ▪ Increase input from secondary streams (short timescale, subject to 

physical and technical availability).

Supply Demand

 ▪ Support entrance of new suppliers in the market (long timescale).

 ▪ Internal manufacturing reuse/recycling (short timescale, subject to 

technical and economic feasibility).

 ▪ Enhance end-of-life recovery through take-back schemes (long-

term, subject to economic and logistical feasibility).

 ▪ Enhance end-of-life recovery through more accessible design (long-

term, subject to technical feasibility).

 ▪ Material substitution (short timescale, subject to substitution 

potential).

 ▪ Minimise manufacturing losses through R&D investment (long 

timescale, subject to technical feasibility).

 ▪ Vertical integration (short timescale).

 ▪ Buy from other industries that can substitute.

 ▪ Labour disputes.

 ▪ Resource constraints (e.g. water or energy).

 ▪ Natural disasters.

 ▪ Problems/absence of transport infrastructure.

 ▪ Geopolitics leading to government intervention, resource 

nationalisation and/or trade restrictions (e.g. export quotas).

 ▪ Legislation restrictions due to ecological and human health concerns 

(e.g. REACH).

 ▪ Social unrest/armed conflicts.

Supply (production disruption) Demand (change in patterns)

 ▪ New disruptive technologies increasing demand and competition 

for materials.

 ▪ Substitution of an element in one technology leads to increased 

demand for other elements.

 ▪ Legislation restrictions (e.g. REACH).

 ▪ New markets (e.g. China, India) leading to increased demand.

Evidence gathered during the expert panel week suggests that the business threats of material criticality are associated to the speed at which the 
supply chain can respond to demand or supply shocks. Managing these threats depends on understanding the sources of capacity risks affecting 
supply and demand, the likelihood of capacity risks developing into disruption events, and the possibilities for increasing the readiness of new 
capacity throughout the supply chain. Numerous capacity risks exist on both the supply and demand sides, including (non-exhaustive list):

Capacity risks do not always transform into disruption events, but when they do, these events can occur on both the supply and demand sides, 
expressed in different ways, including (non-exhaustive list):

The responses that form part of our capacity readiness to supply-demand imbalances are usually prioritised according to criteria such as 
investment risks and economic certainty/motivation, existing technological readiness, geological knowledge and understanding of potential 
new deposits, research and development capacity, or health and safety regulations, among many others. These variables determine the amount 
of time required by these responses to restore the balance in the supply chain and are therefore the key to improve our capacity readiness, as 
shown in the following pages.

Capacity readiness through geological understanding
Although resources of many critical metals may be relatively large 
and widespread in the Earth’s crust, the production concentration 
which is characteristic of a number of these materials presents risks 
to primary supply that concern end-users. This may be manifested 
as market domination by a single supplier, or by groups of suppliers 
who are geographically-concentrated on giant deposits (such as 
the South African Bushveld Complex). This concentration, along 
with inherent uncertainties relating to future demand for individual 
critical metals, seem to present considerable barriers to aspiring 
new entrants who might otherwise contribute to a more diverse and 
resilient primary supply system. 

Evidence gathered during the expert panel week indicates that some 
of the capacity readiness issues associated with, the development 
of, alternative critical metals resources can be mitigated to a 
considerable extent through co-production of critical metals 
with other critical metals, or with other industrial and/or precious 
metals. Co-production spreads commercial risk by avoiding over-
dependence on production of a single critical metal in a relatively 
small market. Crucially, it offers the possibility of a more flexible and 
lower risk approach in responding to rapid fluctuations in demand, 
and therefore price, where viable processing routes are in place. 

An understanding of the controls on element sequestration and 
thus on the ore mineralogy determine the availability of appropriate 
processing routes, which is vital to the evaluation of critical metal-
bearing deposits. In order to determine the critical metal deposits 
that might be most fit for co-metal production, research is needed 
that elucidates:

• The geological processes that produce variations in co-metal/
mineralogical combinations, such that co-metal ore type 
domains can be incorporated into regional geological models, 
which in turn facilitate predictive models for exploration and 
more robust resource estimation.

• Use of the mineral chemistry and mineral associations/
relationships of co-metal ore types within deposits to examine 
deposit suitability for a more responsive supply and to develop 
a broader understanding of crustal stocks

• Geometallurgical models for mineral processing based on 
examination of (1) disaggregation and liberation of the target 
mineral(s), and (2) identification of optimised or novel mineral 
processing routes (see next section). 

The critical metal co-product associations that we have identified 
as most adaptable and having the greatest potential for resilient 
supply are those associated with rocks that formed in three different 
types of magmatic (molten or igneous rock) system.

• Co and PGM critical metal co-production from copper-nickel 
ore deposits in magnesium-rich magmatic systems. 

• REE co-production with Zr, Hf, Nb, Ta and Y from alkali-rich 
(trachytic/syenitic) magmatic-fluid systems, where the REE 
profile is more likely to be enriched in HREE relative to calcium 
and/or magnesium carbonate-rich (carbonatitic) systems. 

• REE and Li co-production with various metals including Nb, Ta, 
Zr, Y, and Sn in rare-element pegmatites (very coarse-grained 
igneous rocks).

One objective of the geological research is to understand the reasons 
for, and thus the characteristics of, elemental and mineralogical 
couplings in polymetallic critical metal deposits to support capacity 
readiness through improved exploration, extraction and mineral 
processing. The geological processes that concentrate the critical 
metals in host rocks of magmatic origin relate to how these systems 
cool, crystallise and interact with fluids within the magma and 
surrounding rocks, and how they react with weathering processes 
when they are exposed at the Earth’s surface.We will select case 
studies of the magmatic systems that encompass these processes, 
and represent the best opportunities for the resilient co-production 
and by-production of critical metals such as PGE, Co, Nb and HREE. 
We will use state-of-the-art analytical techniques to investigate 
the variations in mineral associations, textural contexts and 
mineral chemistry that can be attributed to the various processes. 
The changes in mineral composition, association and grain-
size distribution that arise from each stage of crystallisation, or 
remobilisation, dictates the geometallurgy of critical metal deposits 
which will have consequences for the selection, and viability, of 
alternative processing routes. 

The second objective of the geological research is to broaden out 
from the case studies to investigate methodologies for deriving 
data on crustal stocks of critical metals which might be accessible 
as co- or by-products. This research would be informed by both 
the geological case studies linked to magmatic rocks, and the 
co-investigation into better mineral processing (see next section). 
Existing published statistical and spatial information will also be 
used in the development of resource estimates, contributing to 
critical metal capacity risk and readiness assessments and feeding 
quantitative data into the left-hand entry to the Sankey diagrams. 
For example, estimation of cobalt and PGE resources which might 
be derived from lateritic nickel production. This strand of research 
could encompass investigation of other metals on the NERC list 
and could also expand to include attempting a similar approach in 
estimating secondary resources.  
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Table 1 - Capacity Risks

Table 2 - Disruption Events

Table 3 - Capacity Readiness

Capacity risks and disruption events combined lead to supply-demand imbalances, usually manifested as price volatility in the mineral 
commodities markets. When this occurs, the different stakeholders along the chain react according to their own interests and capabilities 
(capacity readiness). Traditional responses to supply-demand imbalances include (non-exhaustive list):

Pertinent examples of the geological systems that control the occurrence of co-product and 
by-product commodities



Capacity readiness through better mineral processing
The global mass-flow maps of In, Nb, PGMs and Co in pages 2-3 
show that metal losses during beneficiation and refining are 
disproportionally high compared to losses from the rest of the 
lifecycle, reducing critical mineral availability. Two complementary 
research pathways stand out among the capacity readiness 
enhancement alternatives to address this issue:

• The first research pathway continues the research into the 
geological formation and chemistry of mineral deposits from 
the previous section, to develop geometallurgical models 
for mineral processing, using investigations of mineralogical 
understanding to examine disaggregation and liberation of 
ore mineral, and identification of viable mineral processing 
routes. This research is particularly important for rapidly 
identifying geological deposits that are amenable to economic 
exploitation, and targets specifically new mines and addition 
of co-production for strategic minerals to existing operations.

• The second research pathway focuses on characterising the 
physical, technological and economic factors that govern 
existing ore processing methods in order to understand the 
optimisation potential. This will require engaging with the 
relevant stakeholders to understand the financial drivers, and 
the process and technological shortcomings. This pathway 
targets enhancement of the production and reduction of 
losses of strategic minerals from existing mining operations. 

The two research pathways share a common starting point: a deep 
review of processing routes for strategic minerals based on their 
mineralogy. It is necessary to investigate which process technologies 
minimise material losses during various ore co-processing and 
metal refining routes and, from a sustainability point of view, which 
combination has the smallest environmental footprint. This review 
will include all of the key strategic metals identified by the UK’s 
Natural Environment Research Council (i.e. Li, V, Co, Te, Se, Nd, In, 
Ga, HREE, C, Nb and PGMs) and additional elements of interest for 
the project stakeholders. It is envisaged that this review will be the 
first outcome of the project, and will be published as a monograph 
and online resource.
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The references contained in this section correspond to the main data sources employed to build the four Sankey diagrams shown on pages 2-3. 
Further details on how these diagrams have been constructed will be published later on in the form of an academic paper. 

98


