Transforming the Foundation Industries...

... to have absolutely zero emissions by 2050

Transforming Foundation Industries Network+ Conference, Sheffield. Tuesday 5th December 2023, 10.30-11.10

Professor Julian Allwood FREng

Use Less Group, University of Cambridge

Access and references

• A pdf of the slides used in this talk can be downloaded from:

www.uselessgroup.org/about-us/blog

• There is a full set of references at the end of the slide-pack

Climate policy summary

Rising emissions and pledges

Legally committed to zero emissions by 2035:

Finland

Legally committed to zero emissions by 2040:

• Austria, Iceland

Legally committed to zero emissions by 2045:

Germany, Sweden

Legally committed to zero emissions by 2050:

• EU, USA, UK, S Korea, Australia, Canada

Policy document for zero emissions by 2050:

Most South American countries

Policy document for zero emissions by 2060:

China

Policy document for zero emissions by 2070:

• India

Data from https://eciu.net/netzerotracker

Rising temperature and risk

Average temperature anomaly, Global

Global average land-sea temperature anomaly relative to the 1961-1990 average temperature.

Source: Met Office Hadley Centre (HadCRUT5)

Rising temperature and risk

Crop yield changes 1990-2090 averaged over Global Gridded Crop Models

Rising temperature and risk: tipping points

Why isn't it working?

Unpacking burden-shifting via aggregation & deployment rates

"Don't worry! We'll solve it and you won't notice..."

Hydrogen production 2021

- Hydrogen
- Trade
- Carbon offsets
- "Negative emissions technologies"
- Bio-fuels

. . .

• Synthetic fuels

Burden-shifting is endemic to climate policy at present

Incumbent thinking on how to reach zero emissions

Aggregating demand for three "zero-emissions resources"

Aggregation analysis

Sector	2020 GHGs (MtCO2/yr)	Physical units	Option 1	Option 2	
Road vehicles	6,100	2,700 G litres petrol/diesel	140-320 litres biofuel per tonne biomass	6 litres petrol equivalent to 20kWh electric power	
Train	200	40 G litres diesel	As above	As above	
Shipping	900	370 G litres diesel	As above	19kWh per litre synthetic fuel	
Aviation	2,900	470 G litres kerosene	As above	As above	
Electricity (emitting)	10,000	17,000 TWh	10,000 Mt CCS	17,000 TWh non-emitting generation	
Electricity (non-emitting)		9,900 TWh			
Space heating	6,700	8,800 TWh gas boiler output	6,700 Mt CCS	1kWh heat pump = 3.1kWh gas boiler	
Blast furnace Steel	3,700	1,400 Mt Steel	3,700 Mt CCS	3.5MWh/tonne steel via green hydrogen	
Cement	3,100	4,100 Mt Cement	3,100 Mt CCS		
Other industry	6,700		6,700 Mt CCS	Same total electricity as steel	
Deforestation	1,100	Assumed to stop			
Fertiliser/rice/soil/crop	5,300	Un-changed	Direct Air Capture		
Ruminants	3,000	Un-changed	Direct Air Capture		
Waste	1,600	Assumed to stop			
Direct Air Capture		Applicable to all emissions	4MWh/t capture and store plus 1 t CCS per t DAC		

Aggregation of plans discussed at COP26

Non-emitting electricity (TWh/yr)

Deployment rates

Years after Energy Source Begins Supplying 5% of Global Demand

Source: Nelson & Allwood (2021)

Project examples

Offshore Wind Power Timeline

Preliminary result: policy will be constrained by resources

Non-emitting electricity (TWh/yr)

Resource-constrained climate policy

The big picture in the UK:

- By 2050 we will have ~ 2.5x as much emissions-free electricity as today
- We will have no significant carbon storage, surplus biomass, hydrogen or negative emissions technologies
- We have to electrify everything possible, close anything else, and use ~60% as much electricity as we'd otherwise like
- For householders only 4 actions matter stop using:

 \circ fossil boilers,

- fossil cars,
- $\,\circ\,$ fossil planes,
- o ruminants.

Absolute Zero Energy Emission 2050 Delivering the UK's climate change commitment with incremental changes to today's technologies UK FIRES

https://ukfires.org/absolute-zero/

Is Absolute Zero pessimistic?

UK Emissions-freegeneration (as predicted in Absolute Zero, 2019)

Is Absolute Zero pessimistic?

UK Emissions-freegeneration (as predicted in Absolute Zero, 2019)

Engineering net zero (Atkins)

Annual UK Capacity Addition (GW)

https://www.atkinsrealis.com/~/media/Files/S/SNC-Lavalin/documents/beyond-engineering/towards-energy-security-report.pdf

"We'll just have to go a bit faster then..."

Academic responsibility

Flying emissions (tonnes CO_{2e}/person/year)

Source: <u>https://ourworldindata.org/grapher/per-capita-ghg-emissions</u> (The page at this link then gives all the primary data sources)

Zero-emissions production of steel

Materials and global emissions

Source Allwood & Cullen (2012)

Options for making zero emissions steel from ore

- Carbon capture and storage
 - One pilot plant in Abu Dhabi (ADNOC AI Reyadah phase 1) opened in 2016 and is making ~400kt steel/year while capturing ~800kt CO₂/year
 - The captured gas is used to enhance the extraction of natural gas more methane is extracted than CO₂ injected.
 - There is no independent verification of any of the reports from this site
 - No other steel+CCS plants are planned at present
 - Every article written about CCS is authored by a group who want it to happen
 - At best CCS captures 90% of the emissions.

Options for making zero emissions steel from ore

- Hydrogen
 - SSAB in Sweden has begun early trials HYBRIT process and may begin indust operation after 2040
 - "Fossil Free Electricity is the Key": the process requires 3,500 kWh/tonne stee compared to ~500 kWh/tonne for makir steel from scrap with an electric arc furnace: seven times more

Options for making zero emissions steel from ore

Others

- ULCOS in Europe explored a range of options to make steel with less CO_2 i.e. not zero
- HISARNA at Tata Steel Ijmuiden has been in development since 1986, has a theoretical capacity of 65,000 tonnes of steel per year, but has only been tried for a few weeks. It reduces emissions by ~20% and could potentially by connected to a CCS operation
- Tata is considering an industrial scale plant in India by 2030 at best

Recycling will grow with scrap-supply

Source Allwood & Cullen (2012)

Steel-making options

Technology	Blast furnace	Gas + DRI	Electric Arc Furnace	Blast Furnace + CCS	Hydrogen reduction
Global capacity Mtonnes/yr	1,300	100	700 and will double	0.4	0
Emissions (tonnes CO _{2e} /tonne steel)	2.9	~0.9-2.0	0.3	0.3	2.1
Electricity (kWh/tonne)		500	500		3500
Zero emissions?	CCS only	CCS only	Yes	90% reduction, one small demonstrator	Yes – but huge electricity demand

The UK Steel In	dustry	MATERIALS WORLD	January 2016			
SUSTAINABILE MATERIALS WITH BOIN FILS OPEN JULIAN HA KUWARD JOHANHAH HA CULIAN		time to	Ire of steel: wake up ders the recent developments in the fers an approach for the future.			
Forum basidency, which is now making		April 2016		2019	B B C O Old Egremont House A Home News Sport NEWS	: ₁ 5 Weather 12 iPlayer (
2012 www.withbotheyesopen.com	A bright future	ofor UK steel	Steel Arising	ing	Home Israel-Gaza war Cost of Living War in Ukraine Climate UK World Wales Wales Politics Wales Business North West North East Mid South Tata Steel: Unions condemn for UK's biggest steelworks	h West South East Cymru l n plans
			B B C NEWS Interesting	 Old Egremont House He He Cost of Living War in Ukraing 	© 1 November Some News Sport , Weather ▷ iPlayer ↓ Sounds	Nov 2023 tesize ···· Q Search Bi
	A strategy for innovation and leadership	• through up-cycling and integration	Opportunities for the UK in a			C Preator Parmy S Ext
	UNIVERSITY OF CAMBRIDGE		UNIVERSITY OF CAMBRIDGE Of November 2023		nthorpe blast furnaces	

UK steel industry: new upstream opportunities

UK steel industry: new upstream opportunities

Source Daehn et al. (2019)

- To date, copper contamination has not been a problem because it can be absorbed in rebar
- It will become a global problem ~2040-50
- There is a technology opportunity for innovation in removing copper from recycled steel or coping with it

Sustainable metals: science and systems

Scientific discussion meeting Part of the Royal Society scientific programme

Organised by Professor Julian M Allwood FREng and Professor Dierk Raabe.

5 – 6 February 2024

The Royal Society 6 – 9 Carlton House Terrace, London, SW1Y 5AG

Find out more at royalsociety.org/events/for-scientists

THE ROYAL SOCIET

Image: © zephylwer0 from Pixabay

Sustainable metals: science and systems

Scientific discussion meeting Part of the Royal Society scientific programme

Organised by Professor Julian M Allwood FREng and Professor Dierk Raabe.

5 – 6 February 2024

The Royal Society

6 – 9 Carlton House Terrace, London, SW1Y 5AG

Find out more at royalsociety.org/events/for-scientists

THE ROYAL SOCIETY

Image: © zephylwer0 from Pixabay.

Zero-emissions production of cement

Cement and emissions

Innovation space

			Heat	Chemical Emissions	Market fraction potential	Maximum abatemen	
Deployed in existing processes	ſ	SCMs	•	•	80%	45%	Low
	$\left\{ \right.$	Grinding	٠	•	100%	20%	Low
		Alternative fuels	٠		80%	20%	Low
	l	CDW raw meal		٠	5%	10%	Low
CCS - capture demonstrated but not storage	ſ	LEILAC		•	100%	60%	Moderate
	$\left\{ \right\}$	CCS lime production		•	100%	55%	Moderate
	Į	Carbon cycling		•	20%	10%	Moderate
Novel ideas at laboratory scale		Calcium silicates		• • • • • • • • • • • • •	Low	60%	??
	$\left \right $	Electrolytic production of CH		•	Low	50%	Extremely high
	U	Solar ovens	•		Low	40%	High

Cambridge Electric Cement

28-day strength

Source: Dunant et al. (under review)

Cambridge Electric Cement

Copyright © J M Allwood 2023 42

...which are Portland when Alite+Belite > 66%

Cambridge Electric Cement

Cambridge Electric Cement

Potential for UK co-recycling of steel and cement

Innovation for living well with less material

Specification scrap: construction

Source Moynihan & Allwood (2014)

Structural Panda Ltd.

♀ Panda 1.0 — A cost/carbon estimator by the University of Cambridge and Price & Myers

File Select Graph controls Analytics Help

Scrap in car-production

Source: Horton and Allwood (2017)

Folding-Shearing

Source: Allwood et al. (2019), Cleaver et al. (2022)

Folding-shearing compared to deep-drawing

Folding-Shearing

DeepForm Ltd.

- 75% reduction in trimming **scrap**
- Environmental benefit: 30% reduction in embodied emissions per part
- **Cost savings**: 20% reduction in piece cost

Conclusion

Conclusion

- Current climate policy will not deliver in time, due to resource constraints
- A whole-systems view is essential, to identify scale and avoid burden-shifting
- Zero-emissions supply of the bulk materials will be much lower than demand in medium future
- The UK's transformation to electric steel production creates rich upstream opportunities
- There are rich business and research opportunities in making more use of less material

References used in the talk:

- Allwood J.M. and Cullen J.M. (2012) Sustainable Materials: with both eyes open, UIT Cambridge, England, pp 384.
- Allwood, J.M., Cleaver, C.J., Loukaides, E.G., Music, O. and Nagy-Sochacki,
 A. (2019) Folding-shearing: Shrinking and stretching sheet metal with
 no thickness change, *CIRP Annals* 68(1) 285-288
- BP (2021) Statistical Review of World Energy 2021, 70th Edition, <u>www.bp.com</u>
- Carruth, M.A. and Allwood, J.M. (2012) The development of a hot rolling process for variable cross-section I-beams, *Journal of Materials Processing Technology* **212(8)** 1640-1653
- Cleaver, C.J., Arora, R., Loukaides, E.G., Allwood, J.M. (2022) Producing isolated shrink corners by folding-shearing, *CIRP Annals*, **71**, 217-220
- Cooper, D.R., Skelton, A.C.H., Moynihan, M.C. and Allwood, J.M. (2014), Component level strategies for exploiting the lifespan of steel in products, *Resources Conservation and Recycling*, **84** 24-32
- Cullen, J.M. and Allwood, J.M. (2013). Mapping the global flow of aluminium: from liquid aluminium to end-use goods, *Environmental Science and Technology*, **47**, 3057–3064
- Cullen, J.M., Allwood, J.M. and Bambach, M. (2012). Mapping the global flow of steel: from steelmaking to end- use goods, *Environmental Science and Technology* **46(24)**, 13048-13055

- Daehn, K.E., Serrenho, A.C. and Allwood, J.M. (2019) Finding the most efficient way to remove residual copper from steel scrap, *Metallurgical Transactions B*, **50B**, 1225-1240.
- Dunant, C.F., Drewniok, M.P., Eleftheriadis, S., Cullen, J.M. and Allwood,
 J.M. (2018b) Regularity and optimisation practice in steel structural
 frames in real design cases, *Resources Conservation and Recycling*, 134, 294-302
- Dunant, C.F., Drewniok, M.P., Sansom, M., Corbey, S., Allwood, J.M. and Cullen, J.M. (2018a) Options to make steel reuse profitable: An analysis of cost and risk distribution across the UK construction value chain, *Journal of Cleaner Production*, **183**, 102-111
- Global CCS Institute (2021) Global Status of CCS 2021, www.globalccsinstitute.com
- Horton, P.M. and Allwood, J.M. (2017) Yield Improvement Opportunities for Manufacturing Automotive Sheet Metal Components, *Journal of Materials Processing Technology*, **249**, 78-88
- Hula, A., Maguire, A., Bunker, A., Rojeck, T., & Harrison, S. (2022). The 2022 EPA Automotive Trends Report: Greenhouse Gas Emissions, Fuel Economy, and Technology Since 1975 (No. EPA-420-R-22-029).

References used in the talk:

HYBRIT (2017) Summary of findings from HYBRIT Pre-Feasibility Study 2016-17,

https://dh5k8ug1gwbyz.cloudfront.net/uploads/2021/02/Hybritbroschure-engelska.pdf

- IAI (2018) <u>https://international-aluminium.org/statistics/greenhouse-gas-</u> emissions-aluminium-sector/
- International Energy Agency. (2022). *Global Hydrogen Review 2022*. OECD Publishing.
- IPCC SRCCL (2019) IPCC special report on climate change, desertification, land degradation, sustainable land management, food security, and greenhouse gas fluxes in terrestrial ecosystems, <u>www.ipcc.ch</u>
- Keh, Z.H. (2021) Circular Cars, MEng thesis, University of Cambridge.
- Moynihan, M.C. and Allwood, J.M. (2014), Utilisation of structural steel in buildings, *Proceedings of the Royal Society A*, **470** no. 2168 20140170
- Nakajima, K., Takeda, O., Miki, T., Matsubae, K., Nakamura, S., & Nagasaka, T. (2010). Thermodynamic analysis of contamination by alloying elements in aluminum recycling. *Environmental science & technology*, 44(14), 5594-5600.
- Nelson, S.K. and Allwood, J.M. (2021) The technological and social timelines of climate mitigation: lessons from 12 past transitions, *Energy Policy*, **152**, 112155

- Smil, V. (2014). The long slow rise of solar and wind. *Scientific American*, *310*(1), 52-57.
- UK Govt (2022) UK Government GHG Conversion Factors for Company Reporting, <u>https://www.gov.uk/government/publications/greenhouse-gas-reporting-conversion-factors-2022</u>
- Watari, T., Cabrera Serenho A., Gast, L., Cullen, J.M. and Allwood J.M.
 (2023). Feasible supply of bulk materials within a carbon budget is likely to fall short of expected global demand. *Environmental science & technology, under review*.
- Zhou, C., Elshkaki, A., & Graedel, T. E. (2018). Global human appropriation of net primary production and associated resource decoupling: 2010–2050. *Environmental science & technology*, *52*(3), 1208-1215.

A pdf of the slides used in this talk can be downloaded from:

www.uselessgroup.org/about-us/blog