The efficient use of energy is a key component of current efforts to reduce carbon emissions. There are two factors which are important when assessing the potential gains from energy efficiency technologies: the scale of energy flow and the technical potential for improvement. However, most efficiency analyses consider only the potential gains from known efficiency technologies, while ignoring the complex flow of energy through the chains of conversion devices. In response, this paper traces the global flow of energy, from fuels through to the final services, and focuses on the technical conversion devices and passive systems in each energy chain. By mapping the scale and complexity of global energy flow, the technical areas which are likely to deliver the largest efficiency gains can be identified. The result is a more consistent basis for directing future research and policy decisions in the area of energy efficiency
The efficient use of energy is a key component of current efforts to reduce carbon emissions. There are two factors which are important when assessing the potential gains from energy efficiency technologies: the scale of energy flow and the technical potential for improvement. However, most efficiency analyses consider only the potential gains from known efficiency technologies, while ignoring the complex flow of energy through the chains of conversion devices. In response, this paper traces the global flow of energy, from fuels through to the final services, and focuses on the technical conversion devices and passive systems in each energy chain. By mapping the scale and complexity of global energy flow, the technical areas which are likely to deliver the largest efficiency gains can be identified. The result is a more consistent basis for directing future research and policy decisions in the area of energy efficiency.